PD-1/PD-L1 Interaction Maintains Allogeneic Immune Tolerance Induced by Administration of Ultraviolet B-Irradiated Immature Dendritic Cells
نویسندگان
چکیده
Our previous study demonstrated that transfusion of ultraviolet B-irradiated immature dendritic cells (UVB-iDCs) induced alloantigen-specific tolerance between two different strains of mice. Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have been suggested to play an important role in maintaining immune tolerance. In the present study, we seek to address whether PD-1/PD-L1 plays a role in the maintenance of UVB-iDC-induced tolerance. We first observe that the UVB-iDC-induced alloantigen-specific tolerance can be maintained for over 6 weeks. Supporting this, at 6 weeks after tolerance induction completion, alloantigen-specific tolerance is still able to be transferred to syngeneic naïve mice through adoptive transfer of CD4+ T cells. Furthermore, skin transplantation study shows that the survival of allogeneic grafts is prolonged in those tolerant recipients. Further studies show that PD-1/PD-L1 interaction is essential for maintaining the induced tolerance as blockade of PD-1/PD-L1 by anti-PD-L1 antibodies largely breaks the tolerance at both cellular and humoral immunological levels. Importantly, we show that PD-1/PD-L1 interaction in tolerant mice is also essential for controlling alloantigen-responding T cells, which have never experienced alloantigens. The above findings suggest that PD-1/PD-L1 plays a crucial role in maintaining immune tolerance induced by UVB-iDCs, as well as in actively controlling effector T cells specific to alloantigens.
منابع مشابه
The effect of bone marrow-derived mesenchymal stem cells to induce PD-L1 molecule on splenic lymphocytes
Background: Mesenchymal stem cells are non-hematopoietic stromal cells that are used in the treatment of many chronic and autoimmune diseases by modulating the immune system. Due to the limitations of using autologous mesenchymal stem cells, the use of allogeneic stem cells is a promising therapeutic approach in the treatment of immunological disorders. This study aimed to investigate the abili...
متن کاملTolerogenic IDO+ Dendritic Cells Are Induced by PD-1-Expressing Mast Cells
Mast cells (MCs) are tissue resident cells, rich in inflammatory mediators, involved in allergic reactions, and with an increasingly recognized role in immunomodulation. Dendritic cells (DCs), on the other hand, are central to the determination of immune response patterns, being highly efficient antigen-presenting cells that respond promptly to changes in their microenvironment. Here, we show t...
متن کاملRegulatory T Cells and Human Myeloid Dendritic Cells Promote Tolerance via Programmed Death Ligand-1
Immunotherapy using regulatory T cells (Treg) has been proposed, yet cellular and molecular mechanisms of human Tregs remain incompletely characterized. Here, we demonstrate that human Tregs promote the generation of myeloid dendritic cells (DC) with reduced capacity to stimulate effector T cell responses. In a model of xenogeneic graft-versus-host disease (GVHD), allogeneic human DC conditione...
متن کاملPD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation.
Tumor relapses remain a serious problem after allogeneic stem cell transplantation (alloSCT), despite the long-term persistence of minor histocompatibility antigen (MiHA)-specific memory CD8(+) T cells specific for the tumor. We hypothesized that these memory T cells may lose their function over time in transplanted patients. Here, we offer functional and mechanistic support for this hypothesis...
متن کاملProgrammed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells.
Although mature dendritic cells (DCs) are potent initiators of adaptive immune response, immature steady-state DCs contribute to immune tolerance. In this study, we show that ex vivo splenic DCs are capable of inducing conversion of naïve CD4(+) T cells to adaptive Foxp3(+)CD4(+) regulatory T cells (aTreg) in the presence of TGF-beta. In particular, when compared with splenic CD8alpha(-) DCs, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016